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AbslracL Energy minigaps caused by lateral-surface s tm~tuies  in quasi-ane-dimensional 
quantum well wires are calculated using the variational and degPnerate-penurbational 
approaches for GaAsIAIAs wires. By a coordinate transformation, the structured inter- 
faces of the wires are transformed into planar ones so that the boundary conditions of 
the electronic wave functions can be satisfied exactly on the interfaca. The dependences 
of the energy minigaps on the lateral-surface  structure^ are discussed. 

Owing to the great efforts of a large number of researchers, the electronic proper- 
ties in quasi-one-dimensional quantum well wires are now well understood. Because 
of the quantum confinement in two directions, the binding energies of excitons and 
impurity states in the wires are greatly enhanced as compared with those in quasi-two- 
dimensional quantum well structures [I, 21. Recently with the rapid development of 
crystal growth techniques, it has become possible to fabricate quantum wells with pe- 
riodic structures on their interfaces which act as periodic potentials on electrons. This 
novel system, referred to as that of lateral-surface superlattices (LSSLS), has shown 
interesting behaviours in its electronic and optical properties 13-71. Technically, we 
are now also able to fabricate quantum well wires with periodic structures on their 
interfaces-referred to as lateral-surface-superlattice wires (USSLWS) hereinafter-by 
ion beam implantation on LSSU produced by deposition of AlAs and GaAs fractional 
layers on (001) vicinal GaAs substrates (6, 71, for instance. The peculiar electronic 
and optical properties observed in USE, such as magnetoresistance oscillations with 
magnetic fields and strong anisotropies in the ratios of electron-light-hole-exciton 
and electron-heayhole-exciton peak intensities [3-6], may be greatly enhanced in 
LSSLWS. The difFiculty in calculating electronic and optical properties in LSSLWS is that 
the boundary conditions of the electronic wave functions are not easily satisfied on 
the periodically structured interfaces. In this paper, we present a theory that avoids 
this difficulty, and the electronic states in one single wire in which the lateral walls 
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have a periodic undulation are studied. In our considerations, we ignore the tun- 
nelling between the two adjacent quantum well wires, which means that the distance 
between them is assumed to be very large. I n  the practical experiments, there are 
many irregularities in the periodically structured interfaces in LssLs, but their main 
structures are periodic [3-6], and we only examine the exact periodic L s s ~ W s  here. 
In addition, in this paper we considered mainly the ground electronic states whose 
energies (< 150 meV) are much smaller than the conduction band offset between 
AlAs and GaAs (= 1 . O i  eV); hence the potential barrier between AlAs and GaAs 
is assumed to be infinitely high. Further investigations on other properties of LssLws 
will be published subsequently. 

Let us consider a quantum wire of GaAs surrounded by AIAs, which is assumed to 
have rectangular cross section and infinitely high potential barrier between GaAs and 
AlAs. In the effective-mass approximation, the Hamiltonian describing the motion of 
an electron in the quantum wire can be written as 

where p and r are thc elcctron momentum and coordinate respectively, and n is 
the electron-band effective mass which is m = 0.06im, in the GaAs with mo the 
frce-clcctron mass. The electron-confining potential well V(T) is given by 

-4 + fdr) < x < d, + fi(r)  
V ( T )  = { 1 for { -d ,  + f4(T) < Y < d, + f 3 ( ~ )  (2) 

elsewhere 

where 2 d ,  and 2 d ,  are the average widths of the rectangular quantum wire and fa(.) 
(i = 1, 2, 3, 4) describes thc periodic structures on the quantum wire interfaces. 

The following coordinate transformation transforms the quantum wire interfaces 
into flat oncs: 

2' = I. 

In the transformation, we note that 

1 +"(r)H(r)$(r)d.r = 1, @ ( d ) J ( d ) f i ( ~ ' ) & ~ ' )  d r '  

= lj, @ ( ~ ' ) H ~ ~ ( r ' ) & r ' )  d r '  (4) 

where J(T') is the Jacobian determinant, and the effective Hamiltonian is defined as 

H e R ( T ' )  = J ( T ' ) f i ( T ' ) .  (5 )  
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The normalization condition becomes 

After the coordinate transformation, the electron-confining potential well V ( T ~ )  is 

Also, in the new coordinate system the wave function satisfies the boundary conditions 
- 

q(T')laf=*d= = +I(T')ly'=*dg = O. (8) 

In this paper, we consider two typical cases as follows: 

case (i) (9) 

case (ii) (10) 

1 
I 

f l ( ~ )  = -fz(~) = Asin(2n/Ld)z 

f 3 ( ~ )  = -f4(r) = Asin (2n /Ld)z  

f i(r)  = ti(.) = Asin(2?r/Ld)z 

f 3 ( ~ )  = f 4 ( ~ )  = Asin(2?r/Ld)z 

where A and L ,  are the amplitude and period of the interface structures of the 
LSSLW, respectively. Case (i) represents a U S L W  where the central line keeps straight, 
but its widths fluctuate periodically, while case (ii) represents a LSSLW where the 
widths do not change but its central line curves periodically. 

We first calculate the energy minigaps (EMGS) of the LSSLW at the boundaries of 
the Brillouin zone using the variational approach: 

E = f l ( T ) H ( T ) @ ( T )  dT/ ]  J I - ( T ) + ( T ) ~ ~  
V 

= L @ ( T')  He=( T ' ) ~ ( T ' )  d r '  ,/ l, @ ( T ' ) & T ' ) J ( T ' ) d 7 '  (11) 

where & T I )  represents the variational wave function in the new coordinate spaces. 
To satisfy the boundary conditions ( S ) ,  the following trial wave function is adopted: 

&TI) = sin[k,(z' + d,)] sin[k,(y' + d Y ) l ( ~ e i A ~ "  + ~ e ' ~ : " '  1 (12) 

where A and B are variational parameters, k, = nz?r/2d,(ky = n y n / 2 d y )  with 
n,(n,) positive integers, and k, = n?r/Ld(LJz = -nn /Ld) ,  with n the integers 
at the boundaries of the Brillouin zone. Inserting the trial wave function (12) and 
effective Hamiltonian (5) into equation (ll), the variational calculation gives the 
following results. For case (i) the first EMG can be obtained as 

A E g ( l )  = 26,(h2/2m)kE + 2 6 , ( h Z / 2 m ) k i  (13) 
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Figure 1. Numerical resulu for the first EMG, AEg(l) ,  as a function of the cross section 
sim d ,  = d ,  for the ground Slate (n. = ny = 1) in case (i), where the amplitude of 
the fluctuation of the interface structures is A = 10 A. 

where 6, = A / d , ,  6 ,  = A / d  are the relative fluctuations of the USLW in the d, y 
directions, referred to as radial roughness. For case (ii) the first EMG is zero and the 
second EMG becomes 

AE,(2)=2?~’(A/L, ) ’ (h’ /2m)( lcZ.  4 - k i )  (14) 
where A / L ,  is the relative curvature of the LSSLW in the z direction, referred to as 
longitudinal roughness. 

At the same time, the degenerate-perturbational approach is used to calculate the 
EMGS. It is found that the results obtained are the same for both approaches. Then 
we further calculated the second, third, ... EMGS in case (i) using the degenerate- 
perturbational approach and found that the larger the number n the smaller the 

From the analytical resul:s (13) and (14), it is easy to see that in case (i) the first 
EMG, AE,(l) ,  is not dependent on the LSSLW period L,. By fixing the amplitude of 
fiuctuation as A = 10 4 we obtained the numerical results given in figure 1, for the 
case of a square cross section d ,  = d, and the ground state n, = n, = 1. Figure 1 
shows the dependence of the first EMG, AEE(1), on the cross section dimensions 
d ,  = d,. In addition, in case (i) a circular-cross-section USLW is also considered; the 
results obtained with the method developed in this paper are very similar to those for 
the square cross section, and the first EMG of the square-cross-section case is slightly 
larger than that of the circular-cross-section case when they have equal areas. 

a strong dependence on the USLW period L,  as shown in figure 2 where we consider 

EMG. 

In case (U) the first EMG, AE&(l) ,  iS zero and the second EMG, AEg(Z), shows 
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Figure 2. Numerical results for the second EMG, A E s ( 2 ) ,  as a function of the lateral 
period L d  for the ground state (?I* = ny = 1 )  in case (ii), where the amplitude of 
the fluctuation of the interface stmctures is A = 10 A and the cross section sizes are 
d ,  = d, = 100 A. 

A = 10 d, = d, = 100 8. and the ground state n2 = n,, = 1. The results 
indicate that A E , ( 2 )  increases with the decrease of the LSSLW period L,. 

From the above results, it is interesting to note that the EMGs in case (i), where 
the widths of the LSSLW fluctuate periodically, are proportional to the first order of the 
radial roughness A / d ,  ( A l d , )  and independent of the lateral period L,. However, 
the EMGS in case (U), where the central line of the LSSLW curves periodically, are 
proportional to the second order of the  longitudinal roughness A / L d  and so depend 
strongly on the lateral period L,. By reducing the lateral period L,, the EMGs in 
case (U) can be made comparable to those in case (i). This indicates a very useful 
1ssLN' structure where the EMGs can be adjusted by changing the lateral period L,, 
which is achieved by turning the vicinal angles of the G a b  substrates in GaAs/NAs 
LSSLWS produced by the method described at the beginning of the paper. The EMGs 
of LSSLWS can be detected by infrared absorptions; we hope that our theoretical 
predications can soon be tested experimentally. 
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